Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 270
Filter
1.
Viruses ; 16(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38675914

ABSTRACT

Understanding the pathophysiology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is critical for advancing treatment options. This review explores the novel hypothesis that a herpesvirus infection of endothelial cells (ECs) may underlie ME/CFS symptomatology. We review evidence linking herpesviruses to persistent EC infection and the implications for endothelial dysfunction, encompassing blood flow regulation, coagulation, and cognitive impairment-symptoms consistent with ME/CFS and Long COVID. This paper provides a synthesis of current research on herpesvirus latency and reactivation, detailing the impact on ECs and subsequent systemic complications, including latent modulation and long-term maladaptation. We suggest that the chronicity of ME/CFS symptoms and the multisystemic nature of the disease may be partly attributable to herpesvirus-induced endothelial maladaptation. Our conclusions underscore the necessity for further investigation into the prevalence and load of herpesvirus infection within the ECs of ME/CFS patients. This review offers conceptual advances by proposing an endothelial infection model as a systemic mechanism contributing to ME/CFS, steering future research toward potentially unexplored avenues in understanding and treating this complex syndrome.


Subject(s)
Endothelial Cells , Fatigue Syndrome, Chronic , Herpesviridae Infections , Humans , Endothelial Cells/virology , Fatigue Syndrome, Chronic/virology , Fatigue Syndrome, Chronic/physiopathology , Herpesviridae/physiology , Herpesviridae Infections/virology , Virus Latency , Post-Acute COVID-19 Syndrome/pathology , Post-Acute COVID-19 Syndrome/physiopathology
2.
Front Microbiol ; 15: 1376653, 2024.
Article in English | MEDLINE | ID: mdl-38680917

ABSTRACT

The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).

3.
Microb Biotechnol ; 17(4): e14460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38635191

ABSTRACT

Aromatic compounds are used in pharmaceutical, food, textile and other industries. Increased demand has sparked interest in exploring biotechnological approaches for their sustainable production as an alternative to chemical synthesis from petrochemicals or plant extraction. These aromatic products may be toxic to microorganisms, which complicates their production in cell factories. In this study, we analysed the toxicity of multiple aromatic compounds in common production hosts. Next, we screened a subset of toxic aromatics, namely 2-phenylethanol, 4-tyrosol, benzyl alcohol, berberine and vanillin, against transporter deletion libraries in Escherichia coli and Saccharomyces cerevisiae. We identified multiple transporter deletions that modulate the tolerance of the cells towards these compounds. Lastly, we engineered transporters responsible for 2-phenylethanol tolerance in yeast and showed improved 2-phenylethanol bioconversion from L-phenylalanine, with deletions of YIA6, PTR2 or MCH4 genes improving titre by 8-12% and specific yield by 38-57%. Our findings provide insights into transporters as targets for improving the production of aromatic compounds in microbial cell factories.


Subject(s)
Phenylethyl Alcohol , Saccharomyces cerevisiae , Benzyl Alcohol , Biotechnology , Escherichia coli , Membrane Transport Proteins , Organic Chemicals
4.
Biomedicines ; 12(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672245

ABSTRACT

Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.

5.
Membranes (Basel) ; 14(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535289

ABSTRACT

Transport systems play a pivotal role in bacterial physiology and represent potential targets for medical and biotechnological applications. However, even in well-studied organisms like Escherichia coli, a notable proportion of transporters, exceeding as many as 30%, remain classified as orphans due to their lack of known substrates. This study leveraged high-resolution LC-MS-based untargeted metabolomics to identify candidate substrates for these orphan transporters. Human serum, including a diverse array of biologically relevant molecules, served as an unbiased source for substrate exposure. The analysis encompassed 26 paired transporter mutant contrasts (i.e., knockout vs. overexpression), compared with the wild type, revealing distinct patterns of substrate uptake and excretion across various mutants. The convergence of candidate substrates across mutant scenarios provided robust validation, shedding light on novel transporter-substrate relationships, including those involving yeaV, hsrA, ydjE, and yddA. Furthermore, several substrates were contingent upon the specific mutants employed. This investigation underscores the utility of untargeted metabolomics for substrate identification in the absence of prior knowledge and lays the groundwork for subsequent validation experiments, holding significant implications for both medical and biotechnological advancements.

6.
J Pers Med ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392604

ABSTRACT

Postural orthostatic tachycardia syndrome (POTS) is a common accompaniment of a variety of chronic, inflammatory diseases, including long COVID, as are small, insoluble, 'fibrinaloid' microclots. We here develop the argument, with accompanying evidence, that fibrinaloid microclots, through their ability to block the flow of blood through microcapillaries and thus cause tissue hypoxia, are not simply correlated with but in fact, by preceding it, may be a chief intermediary cause of POTS, in which tachycardia is simply the body's exaggerated 'physiological' response to hypoxia. Similar reasoning accounts for the symptoms bundled under the term 'fatigue'. Amyloids are known to be membrane disruptors, and when their targets are nerve membranes, this can explain neurotoxicity and hence the autonomic nervous system dysfunction that contributes to POTS. Taken together as a system view, we indicate that fibrinaloid microclots can serve to link POTS and fatigue in long COVID in a manner that is at once both mechanistic and explanatory. This has clear implications for the treatment of such diseases.

8.
Semin Thromb Hemost ; 50(2): 288-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37207671

ABSTRACT

The prevailing hypotheses for the persistent symptoms of Long COVID have been narrowed down to immune dysregulation and autoantibodies, widespread organ damage, viral persistence, and fibrinaloid microclots (entrapping numerous inflammatory molecules) together with platelet hyperactivation. Here we demonstrate significantly increased concentrations of von Willebrand factor (VWF), platelet factor 4 (PF4), serum amyloid A (SAA), α-2 antiplasmin (α-2AP), endothelial-leukocyte adhesion molecule 1 (E-selectin), and platelet endothelial cell adhesion molecule (PECAM-1) in the soluble part of the blood. It was noteworthy that the mean level of α-2 antiplasmin exceeded the upper limit of the laboratory reference range in Long COVID patients, and the other 5 were significantly elevated in Long COVID patients as compared to the controls. This is alarming if we take into consideration that a significant amount of the total burden of these inflammatory molecules has previously been shown to be entrapped inside fibrinolysis-resistant microclots (thus decreasing the apparent level of the soluble molecules). We conclude that presence of microclotting, together with relatively high levels of six biomarkers known to be key drivers of endothelial and clotting pathology, points to thrombotic endothelialitis as a key pathological process in Long COVID.


Subject(s)
COVID-19 , Thrombosis , Humans , Post-Acute COVID-19 Syndrome , alpha-2-Antiplasmin , von Willebrand Factor/metabolism , Biomarkers
9.
Heliyon ; 9(9): e19605, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809592

ABSTRACT

Long COVID has become a significant global health and economic burden, yet there are currently no established methods or diagnostic tools to identify which patients might benefit from specific treatments. One of the major pathophysiological factors contributing to Long COVID is the presence of hypercoagulability; this results in insoluble amyloid microclots that are resistant to fibrinolysis. Our previous research using fluorescence microscopy has demonstrated a significant amyloid microclot load in Long COVID patients. However, this approach lacked the elements of statistical robustness, objectivity, and rapid throughput. In the current study, we have used imaging flow cytometry for the first time to show a significantly increased concentration and size of these microclots. We identified notable variations in size and fluorescence between microclots in Long COVID and those of controls even using a 20× objective. By combining cell imaging and the high-event-rate and full-sample analysis nature of a conventional flow cytometer, imaging flow cytometry can eliminate erroneous results and increase accuracy in gating and analysis beyond what pure quantitative measurements from conventional flow cytometry can provide. Although imaging flow cytometry was used in our study, our results suggest that the signals indicating the presence of microclots should be easily detectable using a conventional flow cytometer. Flow cytometry is a more widely available technique than fluorescence microscopy and has been used in pathology laboratories for decades, rendering it a potentially more suitable and accessible method for detecting microclots in individuals suffering from Long COVID or conditions with similar pathology, such as myalgic encephalomyelitis.

10.
Metabolomics ; 19(11): 87, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853293

ABSTRACT

INTRODUCTION: Since the beginning of the SARS-CoV-2 pandemic in December 2019 multiple metabolomics studies have proposed predictive biomarkers of infection severity and outcome. Whilst some trends have emerged, the findings remain intangible and uninformative when it comes to new patients. OBJECTIVES: In this study, we accurately quantitate a subset of compounds in patient serum that were found predictive of severity and outcome. METHODS: A targeted LC-MS method was used in 46 control and 95 acute COVID-19 patient samples to quantitate the selected metabolites. These compounds included tryptophan and its degradation products kynurenine and kynurenic acid (reflective of immune response), butyrylcarnitine and its isomer (reflective of energy metabolism) and finally 3',4'-didehydro-3'-deoxycytidine, a deoxycytidine analogue, (reflective of host viral defence response). We subsequently examine changes in those markers by disease severity and outcome relative to those of control patients' levels. RESULTS & CONCLUSION: Finally, we demonstrate the added value of the kynurenic acid/tryptophan ratio for severity and outcome prediction and highlight the viral detection potential of ddhC.


Subject(s)
COVID-19 , Tryptophan , Humans , Tryptophan/metabolism , Kynurenic Acid , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , SARS-CoV-2/metabolism , Metabolomics
11.
Semin Thromb Hemost ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37748515

ABSTRACT

Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.

12.
Biochem J ; 480(15): 1217-1240, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37584410

ABSTRACT

It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.


Subject(s)
COVID-19 , Prions , Thrombosis , Humans , Post-Acute COVID-19 Syndrome , Autoimmunity , Amyloid/metabolism , Fibrinogen , Amyloidogenic Proteins
13.
Biosci Rep ; 43(7)2023 07 26.
Article in English | MEDLINE | ID: mdl-37278746

ABSTRACT

Ergothioneine, an antioxidant nutraceutical mainly at present derived from the dietary intake of mushrooms, has been suggested as a preventive for pre-eclampsia (PE). We analysed early pregnancy samples from a cohort of 432 first time mothers as part of the Screening for Endpoints in Pregnancy (SCOPE, European branch) project to determine the concentration of ergothioneine in their plasma. There was a weak association between the ergothioneine levels and maternal age but none for BMI. Of these 432 women, 97 went on to develop pre-term (23) or term (74) PE. If a threshold was set at the 90th percentile of the reference range in the control population (≥462 ng/ml), only one of these 97 women (1%) developed PE, versus 96/397 (24.2%) whose ergothioneine level was below this threshold. One possible interpretation of these findings, consistent with previous experiments in a reduced uterine perfusion model in rats, is that ergothioneine may indeed prove protective against PE in humans. An intervention study of some kind now seems warranted.


Subject(s)
Ergothioneine , Pre-Eclampsia , Pregnancy , Female , Rats , Humans , Animals , Pre-Eclampsia/prevention & control , Antioxidants , Dietary Supplements , Uterus , Biomarkers
14.
Trends Endocrinol Metab ; 34(6): 321-344, 2023 06.
Article in English | MEDLINE | ID: mdl-37080828

ABSTRACT

Acute COVID-19 infection is followed by prolonged symptoms in approximately one in ten cases: known as Long COVID. The disease affects ~65 million individuals worldwide. Many pathophysiological processes appear to underlie Long COVID, including viral factors (persistence, reactivation, and bacteriophagic action of SARS CoV-2); host factors (chronic inflammation, metabolic and endocrine dysregulation, immune dysregulation, and autoimmunity); and downstream impacts (tissue damage from the initial infection, tissue hypoxia, host dysbiosis, and autonomic nervous system dysfunction). These mechanisms culminate in the long-term persistence of the disorder characterized by a thrombotic endothelialitis, endothelial inflammation, hyperactivated platelets, and fibrinaloid microclots. These abnormalities of blood vessels and coagulation affect every organ system and represent a unifying pathway for the various symptoms of Long COVID.


Subject(s)
COVID-19 , Thrombosis , Humans , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Inflammation
15.
Blood Rev ; 60: 101075, 2023 07.
Article in English | MEDLINE | ID: mdl-36963989

ABSTRACT

ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.


Subject(s)
COVID-19 , Fatigue Syndrome, Chronic , Humans , Fatigue Syndrome, Chronic/etiology , Fatigue Syndrome, Chronic/diagnosis , Post-Acute COVID-19 Syndrome , COVID-19/complications , SARS-CoV-2
16.
J Alzheimers Dis ; 91(1): 43-70, 2023.
Article in English | MEDLINE | ID: mdl-36442193

ABSTRACT

Alzheimer's disease (AD) is a debilitating neurodegenerative disorder affecting 50 million people globally. It is characterized by the presence of extracellular senile plaques and intracellular neurofibrillary tangles, consisting of amyloid-ß and hyperphosphorylated tau proteins, respectively. Despite global research efforts, there is currently no cure available, due in part to an incomplete understanding of the disease pathogenesis. Numerous possible mechanisms, or hypotheses, explaining the origins of sporadic or late-onset AD have been proposed, including the amyloid-ß, inflammatory, vascular, and infectious hypotheses. However, despite ample evidence, the failure of multiple trial drugs at the clinical stage illuminates the possible pitfalls of these hypotheses. Systems biology is a strategy which aims to elucidate the interactions between parts of a whole. Using this approach, the current paper shows how the four previously mentioned hypotheses of AD pathogenesis can be intricately connected. This approach allows for seemingly contradictory evidence to be unified in a system-focused explanation of sporadic AD development. Within this view, it is seen that infectious agents, such as P. gingivalis, may play a central role. The data presented here shows that when present, P. gingivalis or its virulence factors, such as gingipains, may induce or exacerbate pathologies underlying sporadic AD. This evidence supports the view that infectious agents, and specifically P. gingivalis, may be suitable treatment targets in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , tau Proteins/metabolism , Plaque, Amyloid/pathology
17.
Membranes (Basel) ; 12(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36557171

ABSTRACT

Multidrug transporters (MDTs) are major contributors to microbial drug resistance and are further utilized for improving host phenotypes in biotechnological applications. Therefore, the identification of these MDTs and the understanding of their mechanisms of action in vivo are of great importance. However, their promiscuity and functional redundancy represent a major challenge towards their identification. Here, a multistep tolerance adaptive laboratory evolution (TALE) approach was leveraged to achieve this goal. Specifically, a wild-type E. coli K-12-MG1655 and its cognate knockout individual mutants ΔemrE, ΔtolC, and ΔacrB were evolved separately under increasing concentrations of two lipophilic cations, tetraphenylphosphonium (TPP+), and methyltriphenylphosphonium (MTPP+). The evolved strains showed a significant increase in MIC values of both cations and an apparent cross-cation resistance. Sequencing of all evolved mutants highlighted diverse mutational mechanisms that affect the activity of nine MDTs including acrB, mdtK, mdfA, acrE, emrD, tolC, acrA, mdtL, and mdtP. Besides regulatory mutations, several structural mutations were recognized in the proximal binding domain of acrB and the permeation pathways of both mdtK and mdfA. These details can aid in the rational design of MDT inhibitors to efficiently combat efflux-based drug resistance. Additionally, the TALE approach can be scaled to different microbes and molecules of medical and biotechnological relevance.

18.
Cardiovasc Diabetol ; 21(1): 190, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131342

ABSTRACT

BACKGROUND: Post-acute sequelae of COVID-19 (PASC), also now known as long COVID, has become a major global health and economic burden. Previously, we provided evidence that there is a significant insoluble fibrin amyloid microclot load in the circulation of individuals with long COVID, and that these microclots entrap a substantial number of inflammatory molecules, including those that might prevent clot breakdown. Scientifically, the most challenging aspect of this debilitating condition is that traditional pathology tests such as a serum CRP (C-reactive protein) may not show any significant abnormal inflammatory markers, albeit these tests measure only the soluble inflammatory molecules. Elevated, or abnormal soluble biomarkers such as IL-6, D-Dimer or fibrinogen indicate an increased risk for thrombosis or a host immune response in COVID-19. The absence of biomarkers in standard pathology tests, result in a significant amount of confusion for patients and clinicians, as patients are extremely sick or even bed-ridden but with no regular identifiable reason for their disease. Biomarkers that are currently available cannot detect the molecules present in the microclots we identified and are therefore unable to confirm their presence or the mechanisms that drive their formation. METHODS: Here we analysed the protein content of double-digested microclots of 99 long COVID patients and 29 healthy controls. The patients suffering from long COVID reported their symptoms through a questionnaire completed by themselves or their attending physician. RESULTS: Our long COVID cohort's symptoms were found to be in line with global findings, where the most prevalent symptoms were constant fatigue (74%,) cognitive impairment (71%) and depression and anxiety (30%). Our most noteworthy findings were a reduced level of plasma Kallikrein compared to our controls, an increased level of platelet factor 4 (PF4) von Willebrand factor (VWF), and a marginally increased level of α-2 antiplasmin (α-2-AP). We also found a significant presence of antibodies entrapped inside these microclots. CONCLUSION: Our results confirm the presence of pro-inflammatory molecules that may also contribute to a failed fibrinolysis phenomenon, which could possibly explain why individuals with long COVID suffer from chronic fatigue, dyspnoea, or cognitive impairment. In addition, significant platelet hyperactivation was noted. Hyperactivation will result in the granular content of platelets being shed into the circulation, including PF4. Overall, our results provide further evidence of both a failed fibrinolytic system in long COVID/PASC and the entrapment of many proteins whose presence might otherwise go unrecorded. These findings might have significant implications for individuals with pre-existing comorbidities, including cardiovascular disease and type 2 diabetes.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Thrombosis , Biomarkers , C-Reactive Protein/metabolism , COVID-19/complications , Diabetes Mellitus, Type 2/complications , Fibrin/metabolism , Fibrinogen/metabolism , Humans , Interleukin-6 , Plasma Kallikrein , Platelet Factor 4 , Proteomics , Thrombosis/diagnosis , alpha-2-Antiplasmin , von Willebrand Factor/analysis , Post-Acute COVID-19 Syndrome
19.
Semin Thromb Hemost ; 48(7): 858-868, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36174604

ABSTRACT

Earlier variants of SARS-CoV-2 have been associated with hypercoagulability and an extensive formation of fibrin amyloid microclots, which are considered to contribute to the pathology of the coronavirus 2019 disease (COVID-19). The newer omicron variants appear to be far more transmissible, but less virulent, even when taking immunity acquired from previous infections or vaccination into account. We here show that while the clotting parameters associated with omicron variants are significantly raised over those of healthy, matched controls, they are raised to levels significantly lower than those seen with more severe variants such as beta and delta. We also observed that individuals infected with omicron variants manifested less extensive microclot formation in platelet-poor plasma compared with those harboring the more virulent variants. The measurement of clotting effects between the different variants acts as a kind of "internal control" that demonstrates the relationship between the extent of coagulopathies and the virulence of the variant of interest. This adds to the evidence that microclots may play an important role in reflecting the severity of symptoms observed in COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Fibrin
20.
Front Cell Infect Microbiol ; 12: 957287, 2022.
Article in English | MEDLINE | ID: mdl-36093181

ABSTRACT

Tuberculosis (TB) claims nearly 1.5 million lives annually. Current TB treatment requires a combination of several drugs administered for at least 6 months. Mycobacterium tuberculosis (Mtb), the causative agent of TB, can persist in infected humans and animals for decades. Moreover, during infection, Mtb produces differentially culturable bacteria (DCB) that do not grow in standard media but can be resuscitated in liquid media supplemented with sterile Mtb culture filtrates or recombinant resuscitation-promoting factors (Rpfs). Here, we demonstrate that, in an intranasal murine model of TB, Mtb DCB are detectable in the lungs after 4 weeks of infection, and their loads remain largely unchanged during a further 8 weeks. Treatment of the infected mice with dimethyl fumarate (DMF), a known drug with immunomodulatory properties, for 8 weeks eliminates Mtb DCB from the lungs and spleens. Standard TB treatment consisting of rifampicin, isoniazid, and pyrazinamide for 8 weeks reduces Mtb loads by nearly four orders of magnitude but does not eradicate DCB. Nevertheless, no DCB can be detected in the lungs and spleens after 8 weeks of treatment with DMF, rifampicin, isoniazid, and pyrazinamide. Our data suggest that addition of approved anti-inflammatory drugs to standard treatment regimens may improve TB treatment and reduce treatment duration.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Lymph Node , Animals , Antitubercular Agents/therapeutic use , Dimethyl Fumarate/pharmacology , Disease Models, Animal , Humans , Isoniazid/pharmacology , Mice , Pyrazinamide/therapeutic use , Rifampin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...